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Introduction

• Probabilistic graphical models 
 A general framework for describing and applying statistical models

 Statistical modeling, inference and learning

• Directed graphical models (DGMs)
 aka Bayesian networks (BNs)

 e.g. HMMs, Topic models (LDA)

• Undirected graphical models (UGMs)
 aka Markov random fields (MRFs), random fields (RFs), Markov networks (MNs)

 e.g. CRFs, RBMs, DBNs
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This tutorial will
• Introduce the general and basic concepts of undirected graphical models,
• Demonstrate how to apply the theory to solve various problems through a number of case studies.
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Graph theory basics

• A graph is a pair g = (V, E)

 V = { x1,…, xN } is a finite set of vertices, also called nodes, of g

 E is a subset of the set V×V = {(xi, xj): i  j}, called edges of g

 Undirected edge: both (xi, xj) and (xj, xi) belong to E

xi  xj

 Directed edge (arc):  (xi, xj) E and (xj, xi)  E

xi  xj

we say that xi is a parent of xj , xj is a child of xi
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Graph theory basics

x1

x4

x2

x3

 Directed graph: All edges in the graph are directed

 Undirected graph: All edges in the graph are undirected

x1

x3

x2

x4

V = { x1, x2 , x3, x4 }

E = {{x1, x2}, {x2, x1},

{x1, x3}, {x3, x1},

{x2, x4}, {x4, x2},

{x3, x4}, {x4, x3}}

V = { x1, x2 , x3, x4 }

E = {{x1, x2}, 

{x1, x4},

{x2, x3},

{x3, x4}}
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Semantics of DGMs

• A graphical model is a family of probability distributions defined in 
terms of a directed or undirected graph.

• Semantics: how the family of distributions is defined.
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x1

x4

x2

x3

    |V v pa v

v V

p x p x x




Consider a directed acyclic graph (DAG) : g = (V, E)

𝑥𝑉 : a collection of random variables indexed by the nodes

𝑝𝑎 𝑣 : the parent nodes of 𝑣

1 2 3 4 1 2 1 3 2 4 1 3( , , , ) ( ) ( | ) ( | ) ( | , )p x x x x p x p x x p x x p x x x



DGM Example: HMM viewed as DGM
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qt+1qtqt-1q1

yt+1ytyt-1y1

...

...

qT

yT

...

...

The joint probability distribution of a hidden Markov model (HMM) :

       
1

1: 1: 1 1

1 1

, | |
T T

T T t t t t

t t

p q y p q p q q p y q




 

   

Parameterized by: ( ,  A,  B)
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UGM Semantics - (G) property

|A B Sx x x

 A probability distribution p(xV) is said to obey the global Markov property, 

relative to g , if for any triple (A, B, S) of disjoint subsets of V such that S

separates A from B, 

xA xB

xS

S separates A from B : if all trails from A to B intersect S
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Graph theory basics

B C

D E

A

clique C A subset of nodes C is called a clique, 
if every pair of nodes in C is joined.

maximal clique A clique which is maximal (with 
respect to ⊆)
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UGM Semantics - Factorization property (F)

 Potential functions C(xC) are not uniquely determined.

 Without loss of generality, define potentials over maximum cliques.

   
1

V C C

C

p x x
Z




 

where Z is the normalizing constant (partition function)

 
V

C

x C

Z x




 A probability distribution p(xV) is said to factorize according to g, if there 

exist non-negative functions (called potential functions) C(xC) for all 

cliques C such that

   V C C

C

p x x


or

Hammersley-Clifford Theorem: If p is strictly positive, (F)⟺(G).
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UGM Example

             1 2 3 4 5 6 1 2 3 4 5 6, , , , ,p x x x x x x x x x x x x     

 2 5 6 , ,x x x

             1 2 1 3 2 4 3 5 2 5 2 6 5 6 , , , , , , ,x x x x x x x x x x x x x x      

           1 2 3 4 5 6 1 2 1 3 2 4 3 5 2 5 6, , , , , , , , , , ,p x x x x x x x x x x x x x x x x x    
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UGMs and Energy-based models

 Let every clique potential be associated with a clique energy 𝐸 𝑥𝐶

𝐸𝐶 𝑥𝐶 = −𝑙𝑜𝑔𝜙𝐶 𝑥𝐶

 The resulting joint is known as the Gibbs (or Boltzman) distribution

High probability states correspond to low energy configurations.

𝑝 𝑥𝑉 ∝ 𝑒𝑥𝑝 − 

𝐶

𝐸𝐶 𝑥𝐶



UGMs and log-linear models
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 Let each clique potential be a log-linear function

𝑙𝑜𝑔𝜙𝐶 𝑥𝐶 = 𝜃𝐶
𝑇𝑓𝐶 𝑥𝐶

where 𝑓𝐶 𝑥𝐶 is a feature vector derived from the values of the variables 𝑥𝐶 , 

𝜃𝐶 is the associated feature weight vector.

 The resulting joint has the form

𝑝 𝑥𝑉 =
1

𝑍 𝜃
𝑒𝑥𝑝  

𝐶

𝜃𝐶
𝑇𝑓𝐶 𝑥𝐶

This is known as a log-linear model or a Maximum Entropy model.

It can be proved that the maxent distribution is the same as 
the maximum likelihood distribution from the closure of the set of log-linear RF distributions.
S. D. Pietra, V. D. Pietra, and J. Lafferty, “Inducing features of random fields”, IEEE PAMI, 1997.



Relationship between UGMs and other models
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Log-linear 
models

UGMs / energy-based models



Feature-based potential representation in log-linear models

• Consider an edge potential 𝜙𝑠,𝑡 𝑥𝑠, 𝑥𝑡 associated with two discrete variables 
𝑥𝑠 and 𝑥𝑡, both of which can take 𝐾 values.

• Define a feature vector of length 𝐾2 as follows: 
𝑓𝑠,𝑡 𝑥𝑠, 𝑥𝑡 = ⋯ , 1 𝑥𝑠 = 𝑗, 𝑥𝑡 = 𝑘 ,⋯ 𝑇, 𝑗, 𝑘 = 1,⋯ ,𝐾

with the associated weights:

𝜃𝑠,𝑡 = ⋯ , 𝑙𝑜𝑔 𝜙𝑠,𝑡 𝑥𝑠 = 𝑗, 𝑥𝑡 = 𝑘 ,⋯
𝑇
, 𝑗, 𝑘 = 1,⋯ ,𝐾

• Then the tabular potential 𝜙𝑠,𝑡 𝑥𝑠, 𝑥𝑡 can be represented as the log-liner form

𝜙𝑠,𝑡 𝑥𝑠, 𝑥𝑡 = 𝑒𝑥𝑝 𝜃𝑠,𝑡
𝑇 𝑓𝑠,𝑡 𝑥𝑠, 𝑥𝑡

• Note: the log-linear form is more general because we can choose (or learn) the 
features. 16
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UGM Example - Ising model

• Consider a lattice of binary RV’s, xi{-1,1}

   
   

21:
, ,

exp , exp    0i j i jN
i j E i j E

p x x x x x  
 

      
     

      
 

  : how much neighboring variables take identical values is favored.

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

 = 1 = 0.1 or 10 ?  = 0.1 or 10 ?

 Samples of Ising models on a lattice with different  :



Restricted Boltzmann Machines (RBMs)

• RBM is the main building block of a Deep Belief Network

• RBM is a two-layer MRF

 Binary visible variables 𝑣 ∈ 0,1 𝐷

 Binary hidden variables ℎ ∈ 0,1 𝐹

 𝜃 = 𝑊, 𝑏, 𝑎
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𝑝 𝑣, ℎ; 𝜃 =
1

𝑍 𝜃
𝑒𝑥𝑝 −𝐸 𝑣, ℎ; 𝜃

𝐸 𝑣, ℎ; 𝜃 = −𝑣𝑇𝑊ℎ − 𝑏𝑇𝑣 − 𝑎𝑇ℎ

= − 

𝑖=1

𝐷

 

𝑗=1

𝐹

𝑣𝑖𝑊𝑖𝑗ℎ𝑗 −  

𝑖=1

𝐷

𝑏𝑖𝑣𝑖 −  

𝑗=1

𝐹

𝑎𝑗ℎ𝑗

𝑝 ℎ|𝑣; 𝜃 =  

𝑗

𝑝 ℎ𝑗|𝑣 , 𝑝 ℎ𝑗 = 1|𝑣 = 𝜎  

𝑖

𝑊𝑖𝑗𝑣𝑖 + 𝑎𝑗

𝑝 𝑣|ℎ; 𝜃 =  

𝑖

𝑝 𝑣𝑖|ℎ , 𝑝 𝑣𝑖 = 1|ℎ = 𝜎  

𝑗

𝑊𝑖𝑗ℎ𝑗 + 𝑏𝑖

Sigmoid function : 𝜎 𝑥 =
1

1+𝑒−𝑥

0

1

Ruslan Salakhutdinov. “Learning deep generative models”. PhD thesis, University of Toronto, 2009.

RBM: a stochastic version of a NN
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𝑝 𝑣|ℎ; 𝜃 =  

𝑖

𝑝 𝑣𝑖|ℎ ,

𝑝 𝑣𝑖 = 1|ℎ = 𝜎  

𝑗

𝑊𝑖𝑗ℎ𝑗 + 𝑏𝑖

Learned features 𝑊∗𝑗

𝑣|ℎ ~ 𝜎 ℎ1 ∙ 𝑊∗1 + ℎ2 ∙ 𝑊∗2 + ⋯+ 𝑏

/“parts”

𝑊∗7 𝑊∗29

ℎ7 ℎ29 ℎ3~

𝑊∗3

h: higher-level encoding of v

Learned receptive fields for unit ℎ𝑗



Deep Belief Networks (DBNs)
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• DBNs ignite Deep Learning, Science 2006

• DBN is a multilayer mixed directed and undirected model 
 Greedy layer-by-layer learning as pre-training for DNNs

𝑊1

𝑊2

𝑝 𝑣, ℎ1, ℎ2; 𝜃 = 𝑝 𝑣|ℎ1;𝑊1 𝑝 ℎ1, ℎ2;𝑊2

𝜃 = 𝑊1,𝑊2

𝑊1

𝑊2

𝑊3

v

h1

h2

h3

𝑝 𝑣, ℎ1, ℎ2, ℎ3; 𝜃 = 𝑝 𝑣|ℎ1;𝑊1 𝑝 ℎ1|ℎ2;𝑊2 𝑝 ℎ2, ℎ3;𝑊3

𝜃 = 𝑊1,𝑊2,𝑊3
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Conditional Random Fields (CRFs)

y2y1

x

yT
...• A CRF is a conditional distribution defined as a MRF

• 𝑥 is observed sequence, which is always given;

• 𝑦 is hidden sequence;

• 𝜓𝐶 𝑦𝐶 , 𝑥 : Clique feature function.

𝑝 𝑦|𝑥 =
1

𝑍 𝑥
𝑒𝑥𝑝  

𝐶

𝜓𝐶 𝑦𝐶 , 𝑥

J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models for segmenting and 
labeling sequence data”, ICML 2001.
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1

1:

1 1

1, ,exp , ,| ,i i t t j j t

i

T

T

j

T

t t

p y x f y y x t f y x t 








 
  

 
  

   1 1, , , 1i i t t i t tf y y x t y prep y non     ,

   , , 1 ,  onj j t j t tf y x t y prep x    

   , , 1 ,   ends in j j t j t tf y x t y adv x ly   

Linear-chain CRFs

y2y1

x

yT
...

     1

1

1:

1 1

| e ,xp , ,t t t

T

T t

T

t

t t

y y x y xp y x  


 



 
  

 
 

Log-linear representation of tabular potentials

Transition/edge features

State/node features

for sequence tagging, e.g. POS tagging, shallow parser, Chinese word segmentation, …



Why UGMs ?

• Advantages over DGMs
 Undirected modeling is more natural for co-occurrence, where fixing the directions 

of edges is awkward in a graphical model.

 Avoid local normalization and acyclicity requirements 

• Potentially more powerful modeling capacity

• e.g. CRFs overcome the label bias weakness.

• Easily encode a much richer set of patterns/features

• Disadvantages over DGMs
 Parameter learning in UGMs may be more computational expensive.

• The inference problem is (basically) the same in DGMs and UGMs.
 UGMs are computational more efficient by avoiding softmax calculation 23

    |V v pa v

v V

p x p x x


    
1

V C C

C

p x x
Z




 vs



Case study: CRF-based confidence measure (CM)
• Motivation

 The use of forward-backward posterior probabilities as the confidence scores

 Limitation: its performance for CMs cannot be improved easily.

 Use CRFs to combine various relevant features !

24

w1

w2

w3

w4

w5

w6

w7

w9

w10

w11

w8

w1

w3

w2

w4

w6

w5

w7

w9

w8

w10

w11

(a)

(b)

lattice

sausage

1. Reduce lattice to sausage (a linear sequence of slices) so that (linear-chain) CRFs can be used.



Case study: CRF-based confidence measure (CM)
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w1

w2

w3

w4

w5

w6

w7

w9

w10

w11

w8

w1

w3

w2

w4

w6

w5

w7

w9

w8

w10

w11

(a)

(b)

lattice

sausage

2. Define the CRF over sausage

𝑝 𝑞|𝑦 ∝ 𝑒𝑥𝑝  

𝑛=1

𝑁

𝜙𝑛 𝑞𝑛, 𝑦 +  

𝑛=2

𝑁

𝜓𝑛 𝑞𝑛−1, 𝑞𝑛, 𝑦

Given the sausage 𝑦,  the reliability of the word candidate w4 is p(𝑞2=w4 |𝑦).

Z. Ou, H. Luo. “CRF-based Confidence Measures of Recognized Candidates for Lattice-based Audio Indexing.” ICASSP 2012.



Case study

Trans-dimensional Random Field Language Models (TRF LMs) – brand new

• State-of-the-art LMs - review
 N-gram LMs

 Neural network LMs

• Motivation - why

• Model formulation - what

• Model Training - breakthrough 

• Experiment results - evaluation

• Summary
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N-gram LMs

• Language modeling (LM) is to determine the joint probability of a 
sentence, i.e. a word sequence.

• Dominant: Conditional approach
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𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 =  

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1

≈  

𝑖=1

𝑙

𝑝 𝑥𝑖|𝑥𝑖−𝑛+1, ⋯ , 𝑥𝑖−1

Current word All previous words/history

Previous 𝑛 − 1 words

• Using Markov assumption leads to the N-gram LMs

– One of the state-of-the-art LMs



Neural network LMs

• Another state-of-the-art LMs
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𝑝 𝑥𝑖|𝑥1, ⋯ , 𝑥𝑖−1 ≈ 𝑝 𝑥𝑖|𝜙 𝑥1, ⋯ , 𝑥𝑖−1

𝑥1, ⋯ , 𝑥𝑖−1 Neural Network 𝜙 𝑥1, ⋯ , 𝑥𝑖−1 ≜ 𝜙 ∈ 𝑅ℎ

𝑝 𝑥𝑖 = 𝑘|𝑥1, ⋯ , 𝑥𝑖−1 ≈
𝜙𝑇𝑤𝑘

 𝑘=1
𝑉 𝜙𝑇𝑤𝑘

where 𝑉 is lexicon size, 𝑤𝑘 ∈ 𝑅ℎ

history

 Computational very expensive in both training and testing 1

e.g. 𝑉 = 10𝑘~100𝑘, ℎ = 250

1 Partly alleviated by using un-normalized models, e.g. through noise contrastive estimation training.



TRF LMs – Motivation (1)

29

𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑙 =?

𝑥2𝑥1 𝑥3 𝑥𝑙⋯

𝑥2𝑥1 𝑥3 𝑥𝑙⋯

Dominant:
Conditional approach / Directed

Alternative:
Random field approach / Undirected

 A rule in language cognition: employ context for reading and writing

 Difficulty in model training

The cat is on the table. 

The cat is in the house.



TRF LMs – Motivation (2)

• Drawback of N-gram LMs
 N-gram is only one type of linguistic feature/property/constraint

 meeting on Monday 
𝑃 𝑤𝑖 = 𝑀𝑜𝑛𝑑𝑎𝑦|𝑤𝑖−2 = 𝑚𝑒𝑒𝑖𝑛𝑔,𝑤𝑖−1 = 𝑜𝑛

 What if the training data only contain ‘meeting on Monday’ ?

 New feature ‘meeting on DAY-OF-WEEK’, using class

 New feature  ‘party on *** birthday’, using skip 

 New features ….

• 1985: Every time I fire a linguist, the performance of the speech recognizer 
goes up.

• 1995: put language back into language modeling.
30

F. Jelinek, 1932 – 2010



TRF LMs – Formulation

• Intuitive idea
 Features (𝑓𝑖 , 𝑖 = 1,2,… , 𝐹) can be defined flexibly, beyond the n-gram features. 

 Each feature brings a contribution to the sentence probability 𝑝 𝑥

• Formulation

31

𝑝 𝑥 =
1

𝑍
exp  

𝑖=1

𝐹

𝜆𝑖 𝑓𝑖 𝑥 , 𝑥 ≜ 𝑥1, 𝑥2, ⋯ , 𝑥𝑙

𝑓𝑖 𝑥 =  
1, ‘meeting on DAY−OF−WEEK’ appears in 𝑥
0, Otherwise

⇒ 𝜆𝑖 is activated
⇒ 𝜆𝑖 is removed

More flexible features, beyond the n-gram features, can be well supported in RFLMs.
 Computational very efficient in computing sentence probability.



TRF LMs – Breakthrough in training (1)

• Propose Joint Stochastic Approximation (SA) Training Algorithm
 Simultaneously updates the model parameters and normalization constants

32



TRF LMs – Breakthrough in training (2)
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• Propose Trans-dimensional mixture sampling

 Sampling from 𝑝 𝑙, 𝑥𝑙; 𝜆, 𝜁 , a mixture of RFs on subspaces of different dimensions.

 Formally like RJ-MCMC (Green, 1995).



Experiment results

• Benchmarking experiments
 Speech recognition on PTB-WSJ dataset

 Speech recognition on ChiME-4 dataset

 Mandarin speech recognition on Toshiba dataset 

• TRF LMs significantly outperform KN n-gram LMs (10%+ WER relative reduction), 
and perform better than RNN LMs and close to LSTM LMs but with much faster 
speed in computing sentence probabilities (0.16 sec. CPU vs 40 sec. GPU).

• Interpolated TRF and LSTM is better than Interpolated KN5 and LSTM.

34

• Bin Wang, Zhijian Ou, Zhiqiang Tan, “Trans-dimensional Random Fields for Language Modeling”,  ACL 2015. 
• Bin Wang, Zhijian Ou, Yong He, and Akinori Kawamura, "Model Interpolation with Trans-dimensional Random 

Field Language Models for Speech Recognition", arXiv 2016.
• Hongyu Xiang, Bin Wang and Zhijian Ou. “The THU-SPMI CHiME-4 system : Lightweight design with advanced 

multi-channel processing, feature enhancement, and language modeling”. CHiME Workshop, 2016,9. 
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Once said in : J. Goodman, “A bit of progress in language modeling”, Computer Speech & Language, 2001.

Now we can beat n-gram significantly by RNN (Mikolov, 2010) and TRF (2015) …
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Calculate p(xQ | XE=xE)

query nodes evidence

   | ,Q E Q Ep x x p x x Sum-product !

qt+1qtqt-1q1

yt+1ytyt-1y1

...

...

qT

yT

...

...

  
 \ ,

\ ,
, ,

V Q E

Q E V Q E
x

p x x x 

       
1

1: 1: 1 1

1 1

, | |
T T

T T t t t t

t t

p q y p q p q q p y q




 

   

 1:. .  | ?t Te g p q y 

 1: \T tq

    1: 1:| ,t T t Tp q y p q y

 1: \T tq


given ( ,  A,  B)

Inference
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A B C D

0.10.91

0.90.10

10p(B|A)

A

B

0.20.81

0.80.20

10p(C|B)

B

C

0.30.71

0.70.30

10p(D|C)

C

D

   | 0 , 0  p A D p A D        | | 0 |
B C

p A p B A p C B p D C 

Two basic operations: product, marginalization

0.61

0.40

p(A)

A

       | | 0 |
B C

p A p B A p C B p D C  

C

C

BB

B

AAAA
.3576

.1616

0.140.24

0.560.06

0.38

0.62

.038.558

.342.062

.596

.404

0.7

0.3

.6888

.3112

 0.5192

Inference example
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Comment

• Exponential reduction in computation !
 Elimination/marginalization/summation with respect to a variable should be 

performed as early as possible, i.e. Move the sum to the rightmost !

 Cache intermediate results.

• Variable elimination (bucket elimination) 
 A systematic formulation of the heuristic operations.

• R. Dechter, "Bucket Elimination: A Unifying Framework for Probabilistic Inference", UAI 1996.

• S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans. Information Theory, 2000.
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Bucket elimination elim-bel (Dechter 1996)

A

D F

CB

               | 1 | | | , | , | 1
c b f d g

p a g p a p c a p b a p f b c p d a b p g f g  

G

bucketG : 

bucketD : 

bucketF :

bucketB : 

bucketC :

 |p g f  1g 

 | ,p d a b

bucketA :

 | ,p f b c

 |p b a

 |p c a

 p a

   1|G f p g f  

 ,D a b  ,F b c

 ,B a c

 C a

Given an elimination ordering of the variables (e.g. a, c, b, f, d, g), beginning with the query variable.

1. Initialize. For a function, find the its argument which is to be eliminated earliest, then place the function to the 
bucket corresponding to this argument;

2. Processing each bucket / eliminate each variable according to the order;

3. Return: posterior ∝ all functions in the query variable’s bucket.
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Bucket elimination for UGMs

bucketG : 

bucketD : 

bucketF :

bucketB : 

bucketC :

           | 1 , , , , , , , 1
c b f d g

p a g a b c b c f a b d f g g      

 , f g  1g 

 , , a b d

bucketA :

 , , b c f

 , , a b c

   , 1G f f g  

 ,D a b  ,F b c

 ,B a c

 C a

A

D F

CB

G

         
1

, , , , , , , , , , , ,p a b c d f g a b c b c f a b d f g
Z
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Finding MPE (Most Probable Explanation) elim-mpe (Dechter 1996)

           
, , , ,
max | | | , | , 1|

a c b f d
p a p c a p b a p f b c p d a b p g f

 is replaced by max

   * , arg max | ,
d

D a b p d a b

     * , arg max | , 1|
f

F b c p f b c p g f 

D : 

F :

B : 

C :

A

D F

CB

G

 | ,p d a b

A :

 | ,p f b c

 |p b a

 |p c a

 p a

 1|p g f

 ,D a b  ,F b c

 ,B a c

 C a

       * , arg max | , ,  D F
b

B a c p b a a b b c

     * arg max | , B
c

C a p c a a c

MPE    * arg max  C
a

A p a a

max
d

 
, , , ,

arg max , , , , | 1
a c b f d

MPE p a c b f d g 
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Viterbi algorithm: MPE

       
1: 1

1

1: 1: 1 1

1 1

max | max | |
T T

T T

T T t t t t
q q q

t t

p q y p q p q q p y q




 

   

qt

qt-1

q1

q2

     1 2 1 1 1| |p q p q q p y q

       
1

1 1 1 1max | |
t

t t t t t t
q

q p q q p y q q 


   

     1 1 1 1| |t t t t tp q q p y q q   

       
1

1 1| max |
t

t t t t t t
q

q p y q p q q q 


 

qT    |T T Tp y q q
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Forward-backward algorithm
     1 2 1 1 1| |p q p q q p y q

   1| |T T T Tp q q p y q

   1 2 1 1| |T T T Tp q q p y q   

       
1

1 1 1 1| |
t

t t t t t t

q

q p q q p y q q 


   

   1 1 1| |t t t tp q q p y q  

qT

qt-1

q1

q2

qt

qT-1

qt+1    1 1 1| |t t t tp q q p y q  

       
1:

1

1: 1 1

\ 1 1

| | |
T t

T T

t T t t t t

q q t t

p q y p q p q q p y q




 

    

 1tq 

 1tq 

 tq

       1:| |t T t t t tp q y p y q q q  

 1Tq 

 |t tp y q

 tq
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Decoding (recognition)——Viterbi Algorithm

Likelihood calculation——Forward-backward Algorithm

     
1:

1

1\

1

1

| exp , , ,
T t

T T

t t t t t

t tq q

tp q y q q y q y 




 

 
  

 
 

     
1: 1

1

1: 1

1 1

max | expmax , , ,
T T

T T

T t t t t t
q

t
q q

t

p q y q q y q y 




 

 
  

 
 

Linear-chain CRFs y2y1

x

yT
...

     1

1

1:

1 1

| e ,xp , ,t t t

T

T t

T

t

t t

y y x y xp y x  


 



 
  

 
 



 Complexity of processing a bucket

(1) Finding good elimination ordering  triangulation.

(2) Reducing redundant computation for multiple runs of elimination for different queries over the 
same model  Junction Tree algorithm.

     
bucketi

i i

h

scope scope h X


 
  
 

 Space complexity for saving message functions
 iscope

r


  1iscope
r

 
 Time complexity for computing message functions

 
bucketi i

i

x h

h


  

 Complexities (time and space) vary greatly for different elimination ordering.

       , | , ,B D F

b

a c p b a a b b c   The scope of a function is the set of its arguments

Complexity analysis
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p( xH | xE )

xH

      ˆ arg min |H H H E
q

q x KL q x p x x

  HJ q x

Variational principle

• Variational principle :  Optimization over functions

a b
x

  21
b

a
J f f dx max

f

• Variational inference
 Find a function 𝑞 𝑥𝐻 from some simpler and tractable family   

to approximate the target 𝑝 𝑥𝐻|𝑥𝐸
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maximisefixed minimise

   
 

 
|| log

|
H

H

H

x H E

q x
KL q p q x

p x x


     log ||Ep x L q KL q p 

   
 

 

,
log

H

H E

H

x H

p x x
L q q x

q x


 ||KL p q  Expectation Propagation (Minka, 2001)

Minimize the (exclusive) KL divergence

   
 

 
     

,
log log log ,

H H

H E

E H H H E H

x xH

p x x
p x q x q x p x x H q x

q x
      

Inclusive KL divergence

Variational lower-bound



•

Mean-field variational inference

   
 

 

,
log

H

H E

H

x H

p x x
L q q x

q x


   
 

: 

arg max ?
H i

i H

q q x q x

L q








     log ,
H

H H E

x

H q q x p x x 

 log ,q H EE p x x  

•

Iterate:        (0) (0) (0) (0)

1 2 3, , , , Kq x q x q x q x

    exp log , |k q H E kq x E p x x x   

   log log , |   k q H E kq x E p x x x const k H     ，

       (1) (0) (0) (0)

1 2 3, , , , Kq x q x q x q x

       (1) (1) (0) (0)

1 2 3, , , , Kq x q x q x q x

• Mean-field update formula 

   
\

\ log ,
H k

H k H E

x x

q x x p x x
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Coordinate iterate to maximize f(x1, x2)

1x

2x

 1 2,f x x

(0) (0)

1 2,x x

(0) (1)

1 2,x x(1) (1)

1 2,x x



Greedy learning of DBNs

• Key: 𝑝 𝑣, ℎ1;𝑊1,𝑊2 = 𝑊1𝑇
defined by the right DBN with tied weights is identical to 

𝑝 𝑣, ℎ1;𝑊1 defined by the left RBM.

52

𝑙𝑜𝑔𝑝 𝑣;𝑊1,𝑊2 ≥  

ℎ1

𝑄 ℎ1|𝑣 𝑙𝑜𝑔𝑝 ℎ1;𝑊2 + 𝑙𝑜𝑔𝑝 𝑣|ℎ1;𝑊1 + 𝐻 𝑄 ℎ1|𝑣

Take equality when setting 𝑊2 = 𝑊1𝑇
and 𝑄 ℎ1|𝑣 = 𝑝 ℎ1|𝑣;𝑊1

Greedy learning is to freeze 𝑊1 and maximize the variational lower bound with respect to 𝑊2 :

 

ℎ1

𝑝 ℎ1|𝑣;𝑊1 𝑙𝑜𝑔𝑝 ℎ1;𝑊2
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• Monte Carlo methods are a broad class of computational algorithms that rely on 
repeated random sampling to obtain numerical results.

 Evaluate integral        p x
E x x p x dx    

 Draw samples 𝑥 𝑟 ~𝑝 𝑥 , 𝑟 = 1,⋯ , 𝑅

     ( )

1

1 R
r

r

x p x dx x
R

 


 

       ( )

1

1
1 1

R
r

r

p x x x p x dx x x
R 

   

Probability approximated as frequencies

E E E

E E

Inference by Monte Carlo

E

 The variance of the estimator decreases as 𝑂 1/𝑅 . 

 Two broad classes: Markov Chain Monte Carlo (MCMC), Importance sampling

p( xH | xE )

Samples

xH

(1) ( ) ( ), , , ,r R

H H Hx x x



MCMC example: Metropolis–Hastings algorithm

We want to Draw samples from the target distribution 𝑝 𝑥 ?

Solution: Construct a Markov chain that has 𝑝 𝑥 as the stationary distribution.

1. Random initialize 𝑥0

2. For 𝑡 = 1,⋯
Generates 𝑥∗ from proposal/transition kernel 𝑞 𝑥∗|𝑥𝑡−1 ,

Accept 𝑥𝑡 = 𝑥∗ with probability 𝑚𝑖𝑛 1，
𝑝 𝑥∗ 𝑞 𝑥𝑡−1 𝑥∗

𝑝 𝑥𝑡−1 𝑞 𝑥∗|𝑥𝑡−1
, 

otherwise set 𝑥𝑡 = 𝑥𝑡−1

Burn-in : first few samples are discarded.

• For an irreducible & ergodic Markov chain, there exist stationary distribution 𝜋, which satisfies equation 𝜋=𝜋P.
• A sufficient condition: satisfy the detailed balance equation

𝜋𝑖 P𝑖𝑗 = 𝜋𝑗 P𝑗𝑖



Metropolis–Hastings example
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e.g. 𝑞 𝑥∗|𝑥𝑡−1 =
1

2𝜋𝜎2
𝑒

−
𝑥∗−𝑥𝑡−1

2

2𝜎2
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• Draw samples from    1, , Mp z p z z

J.W. Gibbs, 1839-1903

 (1) (1) (1) (1)

1 2 3 41.  , , ,Initialize z z z z

 (2) (1) (1) (1)

1 1 2 3 4  | , ,Sample z p z z z z

 (2) (2) (1) (1)

2 2 1 3 4  | , ,Sample z p z z z z

 (2) (2) (2) (2)

4 4 1 2 3  | , ,Sample z p z z z z

 (2) (2) (2) (1)

3 3 1 2 4  | , ,Sample z p z z z z

2. A sweep generates a full sample of   ( ) ( ) ( ) ( ) ( )

1 2 3 4, , ,t t t t tz z z z z

E E

,E

,E

,E

,E

MCMC example: Gibbs sampling
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Mean-field inference vs Gibbs sampling

Iterate :

       1 2 3, , , , Kq x q x q x q x

   log log , |k q H E kq x E p x x x const   

       1 2 3
ˆ , , , , Kq x q x q x q x

       1 2 3
ˆ ˆ, , , , Kq x q x q x q x

  \
  | ,k k EH k

x sampling from p x x x

   ,k H Ex sampling from p x x

1 2 3,  ,  ,  ,  Kx x x x

1 2 3
ˆ ,  ,  ,  ,  Kx x x x

1 2 3
ˆ,  ,  ,  ,  Kx x x x

Iterate :
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Training of UGMs in general

• Maximum likelihood (ML) training

60

𝜕𝑙 𝜃

𝜕𝜃
= 𝐸  𝑝 𝑥

𝜕𝑄 𝑥; 𝜃

𝜕𝜃
− 𝐸𝑝 𝑥;𝜃

𝜕𝑄 𝑥; 𝜃

𝜕𝜃
= 0

Expectation under 

empirical distribution  𝑝 𝑥 =
1

𝑁
 𝑖=1

𝑁 1 𝑥 = 𝑥𝑖

Expectation under 
model distribution 𝑝 𝑥; 𝜃

Normalization constant:

𝑍 𝜃 =  

𝑥

exp 𝑄 𝑥; 𝜃

𝑝 𝑥; 𝜃 =
1

𝑍 𝜃
exp 𝑄 𝑥; 𝜃

𝑙 𝜃 ≜
1

𝑁
 

𝑖=1

𝑁

𝑙𝑜𝑔𝑝 𝑥𝑖; 𝜃 =
1

𝑁
 

𝑖=1

𝑁

𝑄 𝑥𝑖; 𝜃 − 𝑙𝑜𝑔𝑍 𝜃

The scaled log-likelihood of observed 𝑥𝑖 , 𝑖 = 1,⋯ ,𝑁

Maximum Entropy



Training of UGMs - overview
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• Roughly speaking, two types of approximate methods

• Gradient methods 
 Make explicit use of the gradient: Gradient descent, conjugate gradient, L-BFGS.

 Stochastic approximation (SA) 

 Stochastic maximum likelihood (SML)

 Persistent contrastive divergence (PCD)

• Lower bound methods
 Generalized iterative scaling (GIS)

 Improved iterative scaling (IIS)

 Mostly studied in the context of maximum entropy (maxent) parameter estimation of log-
linear models.

• In practice the gradient methods are shown to be much faster than the lower 
bound methods



Comparison on learning CRFs

• Div: the relative entropy between the fitted 
model and the training data

• Iter: Iteration number
• Evals: the number of calculating log-

likelihood and gradient
• Time: the total time.

• T. Tieleman, “Training restricted 
boltzmann machines using 
approximations to the likelihood 
gradient”, ICML 2008.

• R. Malouf, “A comparison of algorithms 
for maximum entropy parameter 
estimation”, in Proc. Conference on 
Natural Language Learning (CoNLL), 
2002.



Training of log-linear models

63

𝑝 𝑥; 𝜃 =
1

𝑍 𝜃
𝑒𝑥𝑝  

𝐶

𝜃𝐶
𝑇𝑓𝐶 𝑥

𝜕𝑙 𝜃

𝜕𝜃𝐶
= 𝐸  𝑝 𝑥 𝑓𝐶 𝑥 − 𝐸𝑝 𝑥;𝜃 𝑓𝐶 𝑥 = 0

where 𝐶 indexes the cliques.

Empirical statistics of features Expected statistics of features

Statistics matching

• 𝑙 𝜃 is convex in 𝜃, so it has a unique global maximum which we can find using 
gradient-based optimizers. 

• The exact calculation of the gradient is intractable in general, involving high-
dimensional integration. 



Training of log-linear models - example
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𝜕𝑝 𝑦1:𝑇|𝑥; 𝜃

𝜕𝜇𝑗
=  

𝑡=1

𝑇

𝑓𝑗 𝑦𝑡 , 𝑥, 𝑡 − 𝐸𝑝 𝑦|𝑥;𝜃  

𝑡=1

𝑇

𝑓𝑗 𝑦𝑡 , 𝑥, 𝑡 Statistics matching

     
1

1:

1 1

1, ,exp , ,| ,i i t t j j t

i

T

T

j

T

t t

p y x f y y x t f y x t 








 
  

 
  

y2y1

x

yT
...

• Maximum conditional likelihood (MCL)

=  

𝑡=1

𝑇

𝑓𝑗 𝑦𝑡, 𝑥, 𝑡 −  

𝑡=1

𝑇

𝐸𝑝 𝑦𝑡|𝑥;𝜃 𝑓𝑗 𝑦𝑡, 𝑥, 𝑡

 The above gradient involves only one training instance 𝑦1:𝑇|𝑥.

 The gradient of scaled conditional likelihood is sum of gradients for all training instances. 



Training of partially observed UGMs
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Normalization constant:

𝑍 𝜃 =  

𝑥,ℎ

exp 𝑄 𝑥, ℎ; 𝜃

𝑝 𝑥, ℎ; 𝜃 =
1

𝑍 𝜃
exp 𝑄 𝑥, ℎ; 𝜃

• Maximum likelihood (ML) training

𝜕𝑙 𝜃

𝜕𝜃
= 𝐸  𝑝 𝑥 𝑝 ℎ|𝑥

𝜕𝑄 𝑥, ℎ; 𝜃

𝜕𝜃
− 𝐸𝑝 𝑥,ℎ;𝜃

𝜕𝑄 𝑥, ℎ; 𝜃

𝜕𝜃
= 0

Expectation under 
empirical distribution  𝑝 𝑥 𝑝 ℎ|𝑥

Expectation under 
model distribution 𝑝 𝑥, ℎ; 𝜃

𝑙 𝜃 ≜
1

𝑁
 

𝑖=1

𝑁

𝑙𝑜𝑔𝑝 𝑥𝑖; 𝜃 =
1

𝑁
 

𝑖=1

𝑁

𝑙𝑜𝑔  

ℎ

exp 𝑄 𝑥𝑖 , ℎ; 𝜃 − 𝑙𝑜𝑔𝑍 𝜃

Scaled log-likelihood of observed 𝑥𝑖 , 𝑖 = 1,⋯ ,𝑁



Training of partially observed UGMs - example

• RBM is a two-layer MRF

 Binary visible variables 𝑣 ∈ 0,1 𝐷

 Binary hidden variables ℎ ∈ 0,1 𝐹

 𝜃 = 𝑊, 𝑏, 𝑎
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𝑝 𝑣, ℎ; 𝜃 =
1

𝑍 𝜃
𝑒𝑥𝑝 𝑄 𝑣, ℎ; 𝜃

𝑄 𝑣, ℎ; 𝜃 = 𝑣𝑇𝑊ℎ + 𝑏𝑇𝑣 + 𝑎𝑇ℎ

=  

𝑖=1

𝐷

 

𝑗=1

𝐹

𝑣𝑖𝑊𝑖𝑗ℎ𝑗 +  

𝑖=1

𝐷

𝑏𝑖𝑣𝑖 +  

𝑗=1

𝐹

𝑎𝑗ℎ𝑗

𝜕𝑙 𝜃

𝜕𝑊
= 𝐸𝑝𝑒𝑚𝑝

𝑣ℎ𝑇 − 𝐸𝑝𝑚𝑜𝑑𝑒𝑙
𝑣ℎ𝑇

𝜕𝑙 𝜃

𝜕𝑎
= 𝐸𝑝𝑒𝑚𝑝

ℎ − 𝐸𝑝𝑚𝑜𝑑𝑒𝑙
ℎ

𝜕𝑙 𝜃

𝜕𝑏
= 𝐸𝑝𝑒𝑚𝑝

𝑣 − 𝐸𝑝𝑚𝑜𝑑𝑒𝑙
𝑣



Training of UGMs in general

1. Approximate the model expectations using Monte Carlo sampling. 
 We can use MCMC to generate the samples, but running MCMC to 

convergence at each step of the inner loop would be extremely slow.

 Fortunately, it was shown by Younes (1989) that we can start the MCMC chain 
at its previous value, and just take a few steps.

2. We can combine this with stochastic gradient descent (SGD), which 
takes samples from the empirical distribution.

Both two ideas/tricks essentially follows in the framework of Stochastic 
Approximation (SA).

67

• Robbins and Monro (1951). A stochastic approximation method. Ann. Math. Stat.
• L. Younes, “Parametric inference for imperfectly observed gibbsian fields,” Probability Theory and Related Fields, 1989.

gradient = empirical expectation – model expectation



Stochastic Approximation (SA)
Problem: The objective is to find a solution 𝜃 to  𝐸𝑌~𝑓 ∙; 𝜃 𝐻 𝑌; 𝜃 = 𝛼 ,

where 𝜃 ∈ 𝑅𝑑, noisy observation 𝐻 𝑌; 𝜃 ∈ 𝑅𝑑

Method:

(1) Sampling: Generate 𝑌𝑡~𝐾 𝑌𝑡−1,∙ ; 𝜃𝑡−1 , a Markov transition kernel 
that admits 𝑓 ∙; 𝜃𝑡−1 as the invariant distribution.

(2) Updating: Set 𝜃𝑡 = 𝜃𝑡−1 + 𝛾𝑡 𝐻 𝑌𝑡; 𝜃𝑡−1 − 𝛼

𝑒. 𝑔. 𝛾𝑡 =
1

𝑡0 + 𝑡

68
• Robbins and Monro (1951). A stochastic approximation method. Ann. Math. Stat.
• Chen (2002), Stochastic Approximation and Its Applications, Kluwer Academic Publishers.

𝜃

𝐸𝑌~𝑓 ∙; 𝜃 𝐻 𝑌; 𝜃

𝛼



Training of partially observed UGMs – SA algorithm 
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𝜕𝑙 𝜃

𝜕𝜃
= 𝐸  𝑝 𝑣,𝑧;𝜃

𝜕𝑄 𝑣, 𝑧; 𝜃

𝜕𝜃
− 𝐸𝑝 𝑥,ℎ;𝜃

𝜕𝑄 𝑥, ℎ; 𝜃

𝜕𝜃
= 0

Training data : Observed 𝑥𝑖 , 𝑖 = 1,⋯ ,𝑁

 𝑝 𝑣, 𝑧 =
1

𝑁
 

𝑖=1

𝑁

1 𝑣 = 𝑥𝑖 ∙ 𝑝 𝑧|𝑣𝑌 =

𝑣
𝑧
𝑥
ℎ

~𝑓 ∙; 𝜃 =  𝑝 𝑣, 𝑧; 𝜃 𝑝 𝑥, ℎ; 𝜃

(1) Initialize 𝜃0 randomly; 

(2) For iteration 𝑡 = 1,⋯ , do
• Draw a empirical minibatch of size 𝐵 𝑣 𝑖 , 𝑧 𝑖 , 𝑖 = 1,⋯ , 𝐵 according to  𝑝 𝑣, 𝑧; 𝜃𝑡−1 ;

Draw a Monte Carlo minibatch 𝑥 𝑖 , ℎ 𝑖 , 𝑖 = 1,⋯ , 𝐵 by continuously taking 𝐵 steps using a 
Markov transition kernel that admits 𝑝 𝑥, ℎ; 𝜃𝑡−1 as the invariant distribution.
• Updating: 

𝜃𝑡 = 𝜃𝑡−1 + 𝛾𝑡

1

𝐵
  

𝑖=1

𝐵
𝜕𝑄 𝑣 𝑖 , 𝑧 𝑖 ; 𝜃

𝜕𝜃

𝜃=𝜃𝑡−1

−   

𝑖=1

𝐵
𝜕𝑄 𝑥 𝑖 , ℎ 𝑖 ; 𝜃

𝜕𝜃

𝜃=𝜃𝑡−1



Connection of SA with other gradient methods

• Robbins and Monro 1951.

• aka Stochastic Maximum Likelihood (SML), (Younes 1989).

• This was independently discovered by Tieleman in 2008, who called it 
persistent contrastive divergence (PCD).

• In regular contrastive divergence (CD), proposed by Hinton 2002, we 
restart the Markov chain at the training data rather than at the 
previous state. This will not converge to the MLE.

• “Clearly, the widely used practice of CD1 learning is a rather poor 
“substitute” for maximum likelihood learning. “ (Salakhutdinov phd
thesis 2009).
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GIS and IIS for learning log-linear models

• Generalized iterative scaling (GIS)
 Introduce an extra feature 𝑓𝐹+1 𝑥 = 𝑆 −  𝑖=1

𝐹 𝑓𝑖 𝑥
 Then we have 𝑓# 𝑥 =  𝑖=1

𝐹+1 𝑓𝑖 𝑥 = 𝑆 is a constant.

 𝑝 𝑓𝑖 −  

𝑥

𝑝 𝑥 𝑓𝑖 𝑥 𝑒∆𝜆𝑖𝑓# 𝑥 = 0 𝑓# 𝑥 =  

𝑖=1

𝐹

𝑓𝑖 𝑥

∆𝜆𝑖 =
1

𝑆
log

 𝑝 𝑓𝑖
𝑝 𝑓𝑖

𝑖 = 1,… , 𝐹, 𝐹 + 1

• Improved iterative scaling (IIS)

 

𝑚=1

𝑀

 

𝑥|𝑓# 𝑥 =𝑚

𝑝 𝑥 𝑓𝑖 𝑥 𝛽𝑖
𝑚 =  𝑝 𝑓𝑖 𝛽𝑖 = 𝑒∆𝜆𝑖

Use Newton Method to solve the polynomial

𝑝 𝑥; 𝜆 =
1

𝑍
exp  

𝑖=1

𝐹

𝜆𝑖𝑓𝑖 𝑥



•General and basic concepts of UGMs

1.Semantics of DGMs and UGMs

• RBMs, DBNs, CRFs, TRFs

2.Exact inference - variable elimination

3.Approximate inference – variational

4.Approximate inference – Monte Carlo

5.Learning
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Further study
 Daphne Koller, Nir Friedman. “Probabilistic graphical models : principles and techniques”. MIT Press, 2009.

 Detailed, 1231 pages.

 R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter. "Probabilistic Networks and Expert Systems". Springer-
Verlag. 1999.

 One of the best book available, although the treatment is restricted to exact inference. 

 J. Pearl. "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference". Morgan Kaufmann. 1988.
 The book that got it all started! A very insightful book, still relevant today.

• S. Lauritzen. "Graphical Models". Oxford. 1996.
 The definitive mathematical exposition of the theory of graphical models.

• M. I. Jordan (ed). "Learning in Graphical Models". MIT Press. 1999.
 Loose collection of papers on machine learning, many related to graphical models. One of the few books to discuss approximate inference.

• Christopher M. Bishop. “Pattern Recognition and Machine Learning”. Springer 2006.
 Comprehensive, good reference.

• D. J. MacKay. “Information Theory, Inference, and Learning Algorithms”. Cambridge Univ. Press, 2003. 
 Information theory, coding.

• Kevin P. Murphy. “Machine Learning: A Probabilistic Perspective”. MIT Press, 2012.
 Detailed, 1098 pages.
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Thanks for your attention !

Thanks to my collaborators and students : 
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